Due Wednesday March 6 at noon (no late submissions this week)
Unless stated to the contrary, assume all MOS transistors have model parameters $\mu_{\mathrm{n}} \mathrm{Cox}=100 \mu \mathrm{~A} / V^{2}$, $\mathrm{V}_{\mathrm{Tn}}=0.75 \mathrm{~V}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~V}_{\mathrm{T} \mathrm{p}}=-0.75 \mathrm{~V}, \mathrm{Cox}=4 \mathrm{fF} / \mu^{2}, \lambda=0, \gamma=0$ and all BJT transistors have model parameters $J_{s}=10^{-15} \mathrm{~A}, \beta_{\mathrm{n}}=100$, and, $\beta_{\mathrm{p}}=30$.

Problem 1

Find $V_{\text {OUT }}$ in the following circuit.

Problem 2

Find $I_{\text {OUT }}$ in the following circuit.

Problem 3
Determine the output current, $I_{\text {OUT }}$, of the below circuit if $A_{E 1}=100 \mu m^{2}, A_{E 2}=600 \mu m^{2}$, and $I_{I N}=1 \mathrm{~mA}$.

Problem 4

Design a circuit that has an output voltage of 2.0 V relative to ground. You have available any number of MOS transistors of any size and one 5 V dc voltage source.

Problem 5

Design a circuit that will force a current of 1 mA into a 1 K resistor with one terminal of the resistor connected to ground. For your design you have available one 5 V dc power supply, any number of MOS transistors of any size, and the single 1 K resistor shown.

Problem 6 Sketch a cross-sectional view along the BB' cross-section for the CMOS layout shown below. Assume a basic CMOS process in which the n-select mask is generated from the compliment of the p-select mask.

Problem 7 Sketch a cross-sectional view for the DD' cross-section for the CMOS layout given in the previous problem. Assume a basic CMOS process in which the n-select mask is generated from the compliment of the p-select mask.

Problem 8

Consider the following circuit that was designed to have a fixed output voltage when the transistor has an emitter area if $\mathrm{A}_{\mathrm{E}}=200 \mu^{2}$ and $\beta=200$.
a) What is the desired output voltage?
b) How much will that output voltage change if the β of the transistor drops to 50 ?
c) How much will that output voltage change if A_{E} is reduced to $100 \mu^{2}$
d) How much will that output voltage change if the process parameter J_{S} decreases by 50% ?

Problem 9

Assume the op amp in the following circuit is ideal.
a) Determine the voltage V_{1}
b) Determine the voltage V_{2}

Problem 10 Determine the maximum value of R_{1} that will keep M_{1} in saturation. M_{1} has dimensions $\mathrm{W}=6 \mu$ and $\mathrm{L}=3 \mu$ and is in a process with $\mu_{\mathrm{n}} \mathrm{Cox}_{\mathrm{ox}}=350 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=70 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{Tn}}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {Tp }}=-$ $0.5 \mathrm{~V}, \mathrm{C}_{\mathrm{ox}}=8 \mathrm{fF} / \mu^{2}, \lambda=0$, and $\gamma=0$. Assume $\boldsymbol{V}_{\text {IN }}(\mathrm{t})$ is very small.

